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Flooding displaces large populations each season, which potentially increases the exposure of the vulnerable so-
cieties. Having failed to curve down the number of people infected with COVID-19 in the first wave of the pan-
demic, many states in the United States (U.S.) are now at high risk of the concurrence of the two disasters.
Assessing this compound risk before the country enters theflood season is of vital importance. Therefore, we pro-
vide a prompt tool to assess the compound risk of COVID-19 at the county level over the U.S.We find that (1) the
number offlood insurance house claims can proxy thedisplaced population accuratelywithmore spatiotemporal
detail, and (2) the high-risk areas of both flooding and COVID-19 are concentrated along the southern and east-
ern coasts and some parts of the Mississippi River. Our findings may trigger the interest of further exploring the
topics related to the concurrence of COVID-19 and flooding.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

As of July 2020, the COVID-19 global pandemic had infected more
than four million population in the United States (U.S.). In Wuhan,
where the virus was first reported, the initial reproductive number
(R0) was 2.2 (Li et al., 2020), it has been up to 6.5 globally (Liu et al.,
2020). In the U.S., which is seeing the record-breaking numbers of
infections following a reckless reopening of states (Knauer, 2020), the
best-case outcome in the absence of a vaccine or effective has proved
to be managing a controlled transition from community spread.
Nonpharmaceutical mitigation measures including social distancing
and have been proved effective in curving the number of infectees
(Anderson et al., 2020; Dehning et al., 2020; Lai et al., 2020; Prem
et al., 2020; Shen et al., 2020). This has left the U.S. successfully in bend-
ing the curve, just as the country is about to enter the flood season.

During thepast three years,flooding alonehas displaced 10,729peo-
ple per year on average in the U.S. (Internal Displacement Monitoring
Centre, IDMC, https://www.internal-displacement.org/countries/
united-states). This year, potentially increased exposure of the flood-
displaced population to COVID-19 may yield a greater risk of infection.
Flood risk is traditionally evaluated by hydrological models (Fu et al.,
2014; Liang et al., 1994; Shen and Anagnostou, 2017; Shen et al.,
2016), sometimes coupled with hydraulic models (Bates et al., 2010;
Hardesty et al., 2018; Yamazaki et al., 2011) at global, national, and
local scales in terms of the output discharge, inundation extent (Shen
et al., 2019a; Shen et al., 2019b), or depth (Cohen et al., 2017). The tra-
ditional flood risk measures cannot, however, be linked directly to the
displaced population.

Moreover, while many published studies have analyzed the risk of
either flooding or COVID-19, none has evaluated the compound risk
posed by the concurrence of the two. In this study, we aim to provide
a prompt tool to overview the compound risk before the flood season
by utilizing three datasets, 10 years of flood insurance house claims (re-
ferred to as flood claims hereafter), the displaced population from the
past three years, and the COVID-19 infectee records. We will process
the final result to the county level over the U.S.
2. Materials and methods

2.1. COVID-19 transmissivity

Since May 22, many states have reopened regardless of the ongoing
pandemic.We use themean daily reproductive number fromMay 22 to
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Fig. 1. Scatter plots of displaced population and flood claims (N) during flood events since
2017 over the U.S. National Flood Insurance Program NFIP Gridded flood claims are
aggregated to match the spatiotemporal range of the displacement data (D) by Internal
Displacement Monitoring Centre (IDMC).

(b) (c)
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Fig. 2. Distribution of flood claims (a) and the re
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July 1 to represent the current risk of COVID-19. The reproductive num-
ber, R0, is defined as the average number of secondary infectees gener-
ated by a primary infector (Van den Driessche and Watmough, 2008).
Therefore, we define a greater than unity R0 as representing moderate
to extremely high risk and a smaller than unity R0 as indicating low risk.

2.2. Reproductive number estimation

We employ a stochastic approach (Flaxman et al., 2020) to estimate
the reproductive number, R0 from the clinical confirmation of COVID-19
infectees assembled at JohnsHopkinsUniversity (Dong et al., 2020). The
approach models as discrete stochastic number of days the time delay
from when a person becomes infected to his/her clinical confirmation
as a discrete stochastic number of days, and the time from when a per-
son gets infected and to when he/she infects another person. Then the
R0 of a given county on day t, R0t, can be estimated from the daily con-
firmed number of infectees (C), via an intermediate variable, the daily
number of new infectors (I). The conversion from Ct to It is given by
Eq. (1),

It ¼ ∑tþN
τ¼tþ1Cτ lgnτ−t ð1Þ
productive number of COVID-19 (b) and (c).



Table 1
Classification standard of R0 and positive flood claim. N represents the number of positive
flood claims, Q represents the CDF of the standard normal distribution, and Q−1 is its
inverse.

Standardized magnitude R0 N

Low R0<1 Q−1(N) < 0
Medium R0 ≥ 1 and

Q−1(R0) < 0.5
0 ≤ Q−1(N) < 1

High 0.5 ≤ Q−1(R0) < 1.5 1 ≤ Q−1(N) < 2
Very high Q−1(R0) ≥ 1.5 Q−1(N) ≥ 2
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where lgnt is the probability of an infectee's receiving clinical confirma-
tion t days since being infected (Lauer et al., 2020). Note that in Eq. (1), C
records with a 14-day extension need to be used to estimate the It on a
given day. Therefore, we use the COVID-19 records until July 15 to study
the period up to July 1. The conversion from It to R0t is given by Eq. (2),

R0t ¼ It=∑
t−1
τ¼t−NIτgt−τ ð2Þ

where gt is the probability of an infector's infecting other people on the
day t since being infected.

2.3. Invalid R0 value trimming

Non-local community spread can occur in two situations in a given
response unit: before the community spread starts, or when a large
number of infectors are imported in themiddle of a community spread.
Both situations could result in an erroneous R0 value. For the first situa-
tion, we simply set 30 accumulated cases as theminimum threshold for
a community spread to start. R0 outside of the community spreading pe-
riod will be set as No Data. The second situation is featured by a sharp
peak of daily confirmed infectees and/or many days of zero newly con-
firmed cases. In this situation on a given day, if either the number of
newly confirmed infectees on the given day is at least 10 times of any
other day within the 14-day window the given day is centered in, or
the number of newly confirmed infectees are zero on no less than
4 days in the 14-day window ending on the given day, we set R0 of
the 14-day window ending on the given day as No Data.
Fig. 3.Mean daily R0 from May 22 to July 1, 2020 at county-level. Blank counties either have
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2.4. Flood claims and displaced population

The National Flood Insurance Program (NFIP) provides records of
flooded claims (N) and policies since 1972, with the location precise
to 0.1 × 0.1° (~10 km) (https://www.fema.gov/media-library/assets/
documents/180374). We hypothesize that the displaced population is
strongly correlated to the number of flood claims. To verify, we aggre-
gate the gridded flood claim number N to match the spatiotemporal
range of the IDMC records; then compute the Pearson correlation coef-
ficient (r) between the aggregated flood claims and the displaced pop-
ulation available at IDMC since 2017. The high correlation (r2 = 0.83),
as shown in Fig. 1, justifies the use of flood claims instead of the
displaced population because the former (NFIP records) havemore spa-
tial detail and longer records. Finally, we use the total NFIP flood claims
at the county level from 2010 to 2019 to represent the flood risk.

2.5. The compound risk characterization

We find the Normal andWeibull distributions could well character-
ize the county-level R0 and positive claims (see Fig. 2), as written by
Eqs. (3) and (4), and they have low correlation (r = 0.09). Therefore,
we standardize each marginal risk to low, moderate, high, and very
high, then composite the two-dimensional risks as the compound one.
Note that when the R0 is smaller than unity, the virus is likely to die
out. Therefore, we define the low COVID-19 risk category as R0 < 1.
The standardized thresholds for other categories are listed in Table 1.
Note that although we attempt to remove erroneous R0 values by
implementing a trimming algorithm, the lack of tests at early stages or
the insufficient test capabilities in some counties can still bias the trans-
missivity estimation (Manski and Molinari, 2020). Therefore, the stan-
dardization might characterize the risk of COVID-19 more accurately
than directly using the reproductive number.

R0 � Ν 1:17;0:37ð Þ ð3Þ

ln N þ 1ð Þ � Weibull 3:26;1:65ð Þ ð4Þ

3. Results

Compositing the flood and COVID-19 risks at the county level over
the U.S. reveals the hotspots of the compound risk and each marginal
no data or very short period of valid records of community spread in the time window.

https://www.fema.gov/media-library/assets/documents/180374
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Fig. 4. Accumulated flood claims from 2010 to 2019 at the county level.
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risk. Although the correlation between the historical flood risk and re-
cent COVID-19 risk is low, areas at high risk for both exist. As shown
in Fig. 3, the US COVID-19 capitals include the west coastal, south
coastal, and southeastern coastal counties, and the south great plains.
Fig. 4 shows theflood risk is relative higher along the southern and east-
ern coasts, and in areas along the Mississippi River and its main
branches. Consequently, the compound risk is equal or above the high
level (for both) along the southern and eastern coastal counties and
some part of the Mississippi River, as shown in Fig. 5.
Fig. 5. The compound risk of
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4. Discussion

We present a prompt tool to estimate the compound risk posed by
flooding and COVID-19. The areas of high risk for both types of hazards
are concentrated along southern and eastern coastal states, and along
the Mississippi River and its main branches. We also note that although
the northeastern coast used to be the capital of COVID-19 and is also at
high risk for flooding, the compound risk is no thigh because the COVID-
19 risk is currently low. The latter can be attributed to the effective and
flooding and COVID-19.
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stringent mitigation policies adopted by these states (e.g., New York
state, especially New York City). Note that the insufficient COVID-19
clinical records available for many midwestern counties for the period
of consideration could make the evaluation of COVID-19 risk less accu-
rate there. Furthermore, it worth noting that in areas frequently that ex-
perience flooding, residents might be more prepared than areas with
less frequent flooding, resulting a different relationship of flood severity
and impact than we expect before the flood season.

Our study may trigger the interest of studying the following topics:
(1) predicting the flood risk or COVID-19 risk for the next season; and
(2) physically estimating the feedback from flood damage to COVID-
19 risk (e.g., the transmissivity) in 2020 or parameterizing the flood
damage in modeling the COVID-19 risk.
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